Acosta Hospitaleche, C. 2005. Systematic revision of Arthodytes Ameghino, 1905 (Aves, Spheniscidae) and its assignment to the Paraptenodytinae. N. Jb. Geol. Paläont. Abh. 2005(7): 404-414.
Acosta Hospitaleche, C. 2011. A new Early Miocene penguin skull from Patagonia: Taxonomic and paleobiological value. Ameghiniana 48(4): 642-647.
Acosta Hospitaleche, C., and C. Tambussi. 2008. South American fossil penguins: A systematic update. Oryctos 7: 109-127.
Acosta Hospitaleche, C., and A. L. Cione. 2012. The most recent record of †Palaeospheniscus bergi Moreno & Mercerat, 1891 (Aves, Spheniscidae) from the middle Miocene, northeastern Patagonia. N. Jb. Geol. Paläont. Abh. 266(2): 143-148.
Acosta Hospitaleche, C., and E. Olivero. 2016. Re-evaluation of the fossil penguin Palaeeudyptes gunnari from the Eocene Leticia Formation, Argentina: Additional material, systematics and palaeobiology. Alcheringa 40(3): 373-382.
Acosta Hospitaleche, C., M. Chávez, and O. Fritis. 2006. Pingüinos fósiles (Pygoscelis calderensis sp. nov.) en la Formación Bahía Inglesa (Miocene Medio-Plioceno), Chile. Revista Geológica de Chile 33(2): 327-338.
Acosta Hospitaleche, C., M. Reguero, and S. Santillana. 2017. Aprosdokitos mikrotero gen. et sp. nov., the tiniest Sphenisciformes that lived in Antarctica during the Paleogene. N. Jb. Geol. Paläont. Abh. 283(1): 25-34.
Acosta Hospitaleche, C., et al. 2007. A new Miocene penguin from Patagonia and its phylogenetic relationships. Acta Palaeontologica Polonica 52(2): 299-314.
Acosta Hospitaleche, C., et al. 2008. Palaeospheniscus patagonicus (Aves, Sphenisciformes): New discoveries from the Early Miocene of Argentina. Journal of Paleontology 82(3): 565-575.
Acosta Hospitaleche, C., et al. 2019. First penguin fossil (Aves, Spheniscidae) from Uruguay. Journal of South American Earth Sciences 96: 102332.
Alizadeh-Birjandi, E., et al. 2020. Delay of ice formation on penguin feathers. European Physical Journal Special Topics 229: 1881-1896.
Benson, R. D. 2015. A new species of penguin from the Late Miocene of Chile. Scientific Publications of the Science Museum of Minnesota N.S. 8(4): 1-22.
Bertelli, S., N. P. Giannini, and D. T. Ksepka. 2006. Redescription and phylogenetic position of the Early Miocene penguin Paraptenodytes antarcticus from Patagonia. American Museum Novitates (3525): 1-36.
Boersma, P. D. 1975. Adaptation of Galapagos penguins for life in two different environments. in Stonehouse, B., ed. The Biology of Penguins. London: Macmillan.
Cairns, D. K. 1986. Plumage colour in pursuit-diving seabirds: why do penguins wear tuxedos? Bird Behavior 6: 58-65.
Chávez Hoffmeister, M. 2020. Bill disparity and feeding strategies among fossil and modern penguins. Paleobiology 46(2): 176-192.
Chávez Hoffmeister, M., J. D. Carillo Briceño, and S. N. Nielsen. 2014. The evolution of seabirds in the Humboldt Current: New clues from the Pliocene of central Chile. PLoS ONE 9(3): e90043.
Clarke, J. A., et al. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science 330(6006): 954-957.
Clarke, J. A., E. B. Olivero, and P. Puerta. 2003. Description of the earliest fossil penguin from South America and first Paleogene vertebrate locality of Tierra del Fuego, Argentina. American Museum Novitates (3423): 1-18.
Clarke, J. A., et al. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. PNAS 104(28): 11545-11550.
Cole, T. L., et al. 2019. Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation. Molecular Biology and Evolution 36(4): 784-797.
D’Alba, L., et al. 2011. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biology Letters 7: 543-546.
Degrange, F. J., D. T. Ksepka, and C. P. Tambussi. 2018. Redescription of the oldest crown clade penguin: Cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus. Journal of Vertebrate Paleontology e1445636.
Eagle, M. K., B. J. Gill, and J. A. Grant-Mackie. 2005. Pliocene bird bones from Pitt Island, Chatham Islands, New Zealand. Records of the Auckland Museum 42: 67-73.
Emslie, S. D., and C. G. Correa. 2003. A new species of penguin (Spheniscidae: Spheniscus) and other birds from the late Pliocene of Chile. Proceedings of the Biological Society of Washington 116(2): 308-316.
Fordyce, R. E., and D. B. Thomas. 2011. Kaiika maxwelli, a new Early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 54(1): 43-51.
Frost, P. G. H., W. R. Siegfried, and A. E. Burger. 1976. Behavioural adaptations of the Jackass penguin, Spheniscus demersus to a hot, arid environment. Journal of Zoology, London 179: 165-187.
Gavryushkina, A., et al. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systematic Biology 66(1): 57-73.
Göhlich, U. B. 2007. The oldest fossil record of the extant penguin genus Spheniscus—a new species from the Miocene of Peru. Acta Palaeontologica Polonica 52(2): 285-298.
Ho, C. Y.-K., et al. 1976. Penguin evolution: Protein comparisons demonstrate phylogenetic relationship to flying aquatic birds. Journal of Molecular Evolution 8: 271-282.
Jadwiszczak, P. 2006. Eocene penguins of Seymour Island, Antarctica: The earliest record, taxonomic problems and some evolutionary considerations. Polish Polar Research 27(4): 287-302.
Jadwiszczak, P. 2009. Penguin past: The current state of knowledge. Polish Polar Research 30(1): 3-28.
Jadwiszczak, P. 2013. Taxonomic diversity of Eocene Antarctic penguins: A changing picture. in: Hambrey, M. J., et al. (eds.) Antarctic Palaeoenvironments and Earth-Surface Processes. Special Publications 381. London: Geological Society.
Jadwiszczak, P., C. Acosta Hospitaleche, and M. Reguero. 2013. Redescription of Crossvallia unienwillia: The only Paleocene Antarctic penguin. Ameghiniana 50(6): 545-553.
Jadwiszczak, P., M. Reguero, and T. Mörs. 2021. A new small-sized penguin from the Late Eocene of Seymour Island with additional material of Mesetaornis polaris. GFF 143(2-3): 283-291.
Jadwiszczak, P., et al. 2013. The first record of fossil penguins from East Antarctica. Antarctic Science 25(3): 397-408.
Jouventin, P., C. Couchoux, and F. S. Dobson. 2009. UV signals in penguins. Polar Biology 32: 513-514.
Jouventin, P., et al. 2005. Ultraviolet beak spots in king and emperor penguins. The Condor 107: 144-150.
Jouventin, P., et al. 2007. Coloured patches influence pairing rate in King Penguins. Ibis doi: 10.1111/j.1474-919x.2007.00749.x
Kobayashi, K., et al. 1998. Fine structure of the tongue and lingual papillae of the penguin. Archives of Histology and Cytology 61(1): 37-46.
Ksepka, D. T., and S. Bertelli. 2006. Fossil penguin (Aves: Sphenisciformes) cranial material from the Eocene of Seymour Island (Antarctica). Historical Biology 18(4): 389-395.
Ksepka, D. T., and J. A. Clarke. 2010. The basal penguin (Aves: Sphenisciformes) Perudyptes devriesi and a phylogenetic evaluation of the penguin fossil record. Bulletin of the American Museum of Natural History 337(77): 1-77.
Ksepka, D. T., and D. B. Thomas. 2012. Multiple Cenozoic invasions of Africa by penguins (Aves, Sphenisciformes). Proceedings of the Royal Society B 279: 1027-1032.
Ksepka, D. T., S. Bertelli, and N. P. Giannini. 2006. The phylogeny of the living and fossil Spheniscifomes (penguins). Cladistics 22: 412-441.
Ksepka, D. T., et al. 2008. Osteology of Icadyptes salasi, a giant penguin from the Eocene of Peru. Journal of Anatomy 213: 131-147.
Ksepka, D. T., et al. 2012. New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. Journal of Vertebrate Paleontology 32(2): 235-254.
Ksepka, D. T., et al. 2015. Bone histology in extant and fossil penguins (Aves: Sphenisciformes). Journal of Anatomy 227: 611-630.
Kulp, F. B., et al. 2018. Keratin nanofiber distribution and feather microstructure in penguins. The Auk 135: 777-787.
Le Bohec, C., M. Gauthier-Clerc, and Y. Le Maho. 2005. The adaptive significance of crèches in the king penguin. Animal Behavior 70(3): 527-538.
Le Maho, Y. 1977. The emperor penguin: A strategy to live and breed in the cold. American Scientist 65(6): 680-693.
Lightner, J. K. 2013. An initial estimate of avian Ark kinds. Answers Research Journal 6: 409-466.
Massaro, M., L. S. Davis, and J. T. Darby. 2003. Carotenoid-derived ornaments reflect parental quality in male and female yellow-eyed penguins (Megadyptes antipodes). Behavioral Ecology and Sociobiology 55: 169-175.
Mayr, G., et al. 2017. A Paleocene penguin from New Zealand substantiates multiple origins of gigantism in Sphenisciformes. Nature Communications 8: 1927.
Mayr, G., et al. 2018. A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand. Journal of Vertebrate Paleontology e1398169.
Mayr, G., et al. 2019. Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand. Alcheringa 44(1): 194-201.
Mayr, G., et al. 2020. First complete wing of a stem group Sphenisciform from the Paleocene of New Zealand sheds light on the evolution of the penguin flipper. Diversity 12(46).
Myrcha, A., et al. 2002. Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Polish Polar Research 23(1): 5-46.
Park, T. 2014. Redescription of the Miocene penguin Pseudaptenodytes macraei Simpson (Aves: Sphenisciformes) and redefinition of the taxonomic status of ?Pseudaptenodytes minor Simpson. Alcheringa 38(3): 450-454.
Park, T., and E. M. G. Fitzgerald. 2012. A review of Australian fossil penguins (Aves: Sphenisciformes). Memoirs of Museum Victoria 69: 309-325.
Park, T., et al. 2016. New Miocene fossils and the history of penguins in Australia. PLoS ONE 11(4): e0153915.
Robin, J.-P., et al. 1998. Behavioral changes in fasting emperor penguins: Evidence for a “refeeding signal” linked to a metabolic shift. American Journal of Physiology 274(43): R746-R753.
Sallaberry, M. A., et al. 2010. Eocene birds from the western margin of southernmost South America. Journal of Paleontology 84(6): 1061-1070.
Simpson, G. G. 1971a. A review of the pre-Pliocene penguins of New Zealand. Bulletin of the American Museum of Natural History 144(5): 319-378.
Simpson, G. G. 1971b. Review of fossil penguins from Seymour Island. Proceedings of the Royal Society, London B 178: 357-387.
Slack, K. E., et al. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution 23(6): 1144-1155.
Subramanian, S., et al. 2013. Evidence for a recent origin of penguins. Biology Letters 9: 20130748.
Tamburrini, M., et al. 1999. The myoglobin of Emperor penguin (Aptenodytes forsteri): Amino acid sequence and function adaptations to extreme conditions. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 122(2): 235-240.
Tambussi, C. P., et al. 2005. Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the Late Paleocene of Antarctica. Geobios 38: 667-675.
Tambussi, C. P., et al. 2006. Late Eocene penguins from West Antarctica: Systematics and biostratigraphy. in: Francis, J. E., D. Pirrie, and J. A. Crame (eds.) Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctic. London: Geological Society.
Templeton, A. R. 2008. The reality and importance of founder speciation in evolution. BioEssays 30(5): 470-479.
Thomas, D. B., and D. T. Ksepka. 2013. A history of shifting fortunes for African penguins. Zoological Journal of the Linnean Society 168(1): 207-219.
Thomas, D. B., and D. T. Ksepka. 2016. The Glen Murray fossil penguin from the North Island of New Zealand extends the geographic range of Kairuku. Journal of the Royal Society of New Zealand 46(3-4): 200-213.
Thomas, D. B., D. T. Ksepka, and R. E. Fordyce. 2011. Penguin heat-retention structures evolved in a greenhouse Earth. Biology Letters 7: 461-464.
Thomas, D. B., et al. 2013. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. Journal of the Royal Society Interface 10: 20121065.
Thomas, D. B., et al. 2020. Ancient crested penguin constrains timing of recruitment into seabird hotspot. Proceedings of the Royal Society B 287: 20201497.
Vianna, J. A., et al. Genome-wide analyses reveal drivers of penguin diversification. PNAS 117(36): 22303-22310.
Walsh, S. A., and M. E. Suárez. 2006. New penguin remains from the Pliocene of northern Chile. Historical Biology 18(2): 115-126.
Wang, S., et al. 2016. Icephobicity of penguins Spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. Journal of Physical Chemistry C 120(29): 15923-15929.
Watanabe, M., et al. 2006a. The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene 365: 57-66.
Watanabe, M., et al. 2006b. New candidate species most closely related to penguins. Gene 378: 65-73.
Williams, C. L., J. C. Hagelin, and G. L. Kooyman. 2015. Hidden keys to survival: The type, density, pattern and functional role of emperor penguin body feathers. Proceedings of the Royal Society B 292: 20152033.
Wood, T. C. 2008. Animals and plant baramins. Center for Origins Research Issues in Creation 3: 1-258.
Yury-Yáñez, R. E., et al. 2012. First bird remains from the Eocene of Algarrobo, central Chile. Andean Geology 39(3): 548-557.